Gamma expansion of the Heston stochastic volatility model
نویسندگان
چکیده
We derive an explicit representation of the transitions of the Heston stochastic volatility model and use it for fast and accurate simulation of the model. Of particular interest is the integral of the variance process over an interval, conditional on the level of the variance at the endpoints. We give an explicit representation of this quantity in terms of infinite sums and mixtures of gamma random variables. The increments of the variance process are themselves mixtures of gamma random variables. The representation of the integrated conditional variance applies the Pitman-Yor decomposition of Bessel bridges. We combine this representation with the Broadie-Kaya exact simulation method and use it to circumvent the most time-consuming step in that method.
منابع مشابه
From characteristic functions to implied volatility expansions
For any strictly positive martingale S = e for which X has an analytically tractable characteristic function, we provide an expansion for the implied volatility. This expansion is explicit in the sense that it involves no integrals, but only polynomials in log(K/S0). We illustrate the versatility of our expansion by computing the approximate implied volatility smile in three well-known martinga...
متن کاملرویکرد روش مونت کارلوی کمترین مربعات برای قیمت گذاری اختیار فروش آمریکایی چند دارایی تحت مدل هستون-هال وایت
In this paper, we study the problem of pricing multi-asset American-style options in the Heston-Hull-White model. It is widely recognized that our intended model compared to the original Heston model, due to its stochastic interest rate and stochastic volatility, is more compatible with the realistic of the market. We demonstrate the efficiency and accuracy of the our proposed method by verifyi...
متن کاملA Fast Mean-reverting Correction to Heston Stochastic Volatility Model
We propose a multi-scale stochastic volatility model in which a fast mean-reverting factor of volatility is built on top of the Heston stochastic volatility model. A singular pertubative expansion is then used to obtain an approximation for European option prices. The resulting pricing formulas are semi-analytic, in the sense that they can be expressed as integrals. Difficulties associated with...
متن کاملA Fast Mean-Reverting Correction to Heston's Stochastic Volatility Model
We propose a multi-scale stochastic volatility model in which a fast mean-reverting factor of volatility is built on top of the Heston stochastic volatility model. A singular pertubative expansion is then used to obtain an approximation for European option prices. The resulting pricing formulas are semi-analytic, in the sense that they can be expressed as integrals. Difficulties associated with...
متن کاملOn Pricing Barrier Options with Discrete Monitoring
This paper proposes a new approximation method for pricing barrier options with discrete monitoring under stochastic volatility environment. In particular, the integration-by-parts formula and the duality formula in Malliavin calculus are effectively applied in an asymptotic expansion approach. First, the paper derives an asymptotic expansion for generalized Wiener functionals. After it is appl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Finance and Stochastics
دوره 15 شماره
صفحات -
تاریخ انتشار 2011